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Exercise 1.2.6

Suppose that the specific heat is a function of position and temperature, c(x, u).

(a) Show that the heat energy per unit mass necessary to raise the temperature of a thin slice
of thickness ∆x from 0° to u(x, t) is not c(x)u(x, t), but instead

´ u
0 c(x,u) du.

(b) Rederive the heat equation in this case. Show that (1.2.3) remains unchanged.

Solution

Part (a)

The heat capacity C is defined as the amount of thermal energy it takes to raise the temperature
of some mass by one unit. In this exercise, however, it takes more or less energy to raise the
temperature by one unit if the mass is at one temperature compared to another. Assume that at
the temperature u1 the mass has thermal energy U1, and at the temperature u2 the mass has
thermal energy U2. An approximate formula for the heat capacity is given by the difference
quotient.

U2 − U1

T2 − T1
≈ C

As u2 gets closer and closer to u1, the approximation to c becomes better and better. In the limit
as u2 approaches u1, equality results.

lim
u2→u1

U2 − U1

u2 − u1
= C

The left side is the first derivative of U with respect to u.

dU

du
= C

To solve this differential equation, separate variables.

dU = C du

Integrate both sides. ˆ U2

U1

dU =

ˆ u2

u1

C(u) du

In this exercise the temperature goes from 0° to u, so the limits of the integral on the right side
will be replaced. Solve the integral on the left side.

U2 − U1 =

ˆ u

0
C(u) du

Let ∆U = U2 − U1. It represents the change in thermal energy of the mass as a result of going
from 0° to u.

∆U =

ˆ u

0
C(u) du

If the mass is a one-dimensional rod that is nonuniform, then the heat capacity will vary as a
function of x.

∆U =

ˆ u

0
C(x,u) du
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To obtain the change in thermal energy per unit mass, divide both sides by the mass m.

∆U

m
=

ˆ u

0

C(x,u)

m
du

The heat capacity per unit mass is called the specific heat c—note that the adjective, “specific,”
implies per unit mass. Therefore,

∆U

m
=

ˆ u

0
c(x,u) du.

Part (b)

The law of conservation of energy states that energy is neither created nor destroyed. If some
amount of thermal energy enters the left side of a shell at x, then that same amount must exit the
right side of it at x+ ∆x for the temperature to remain the same. If more (less) thermal energy
enters at x than exits at x+ ∆x, then the amount of thermal energy in the shell will change,
leading to an increase (decrease) in its temperature. The mathematical expression for this idea,
an energy balance, is as follows.

rate of thermal energy in− rate of thermal energy out = rate of energy accumulation

Figure 1: This is a schematic of the one-dimensional rod. The heat flow into the left side at x is
the cross-sectional area there A times φ(x, t), and the heat flow out of the right side at x+ ∆x is
the cross-sectional area there A times φ(x+ ∆x, t).

Assuming there is a heat source per unit volume Q, then that will be included on the left in the
terms for “rate of thermal energy in.” The heat flux is defined to be the rate that thermal energy
flows through the shell per unit area, and we denote it by φ = φ(x, t). If we let U represent the
amount of thermal energy of the rod, then the energy balance over it is

Q∆V +Aφ(x, t)−Aφ(x+ ∆x, t) =
dU

dt

∣∣∣∣
shell

.

Factor −A from the two terms containing φ.

Q∆V −A[φ(x+ ∆x, t)− φ(x, t)] =
dU

dt

∣∣∣∣
shell

(1)

We will show now that equation (1.2.3) in the text still holds. The thermal energy inside the shell
is obtained by multiplying the thermal energy density e(x, t) by the shell volume ∆V .

Q∆V −A[φ(x+ ∆x, t)− φ(x, t)] =
d

dt
e(x, t)∆V
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The volume ∆V is the cross-sectional area A times thickness ∆x.

QA∆x−A[φ(x+ ∆x, t)− φ(x, t)] = A∆x
∂e

∂t

Divide both sides by A∆x.

Q− φ(x+ ∆x, t)− φ(x, t)

∆x
=
∂e

∂t
Now take the limit as ∆x→ 0.

Q− lim
∆x→0

φ(x+ ∆x, t)− φ(x, t)

∆x
=
∂e

∂t

The limit is the first derivative of φ with respect to x. Therefore, equation (1.2.3) still holds.

∂e

∂t
= −∂φ

∂x
+Q (1.2.3)

The thermal energy per unit volume can be obtained by multiplying the thermal energy per unit
mass in part (a) with the density ρ(x).

e(x, t) = ρ(x)
∆U

m

= ρ(x)

ˆ u

0
c(x,u) du

Substituting this into equation (1.2.3), we get

∂

∂t

[
ρ(x)

ˆ u

0
c(x,u) du

]
= −∂φ

∂x
+Q(x, t),

or

ρ(x)
∂

∂t

ˆ u

0
c(x,u) du= −∂φ

∂x
+Q(x, t).

Apply the Leibnitz integration rule to differentiate the integral.

ρ(x)

[ˆ u

0

∂

∂t
c(x,u)︸ ︷︷ ︸
= 0

du+ c(x, u) · ∂u
∂t
− c(x, 0) · 0

]
= −∂φ

∂x
+Q(x, t)

The equation simplifies to

ρ(x)c(x, u)
∂u

∂t
= −∂φ

∂x
+Q.

According to Fourier’s law of heat conduction, the heat flux is proportional to the temperature
gradient.

φ = −K0(x)
∂u

∂x
,

where K0(x) is a proportionality constant known as the thermal conductivity. It varies as a
function of x because the rod is nonuniform. As a result, the energy balance becomes an equation
solely for the temperature.

ρ(x)c(x, u)
∂u

∂t
= − ∂

∂x

[
−K0(x)

∂u

∂x

]
+Q(x, t)

Therefore, the governing equation for the temperature in a nonuniform one-dimensional rod with
heat source Q(x, t) and specific heat varying as a function of temperature c(x, u) is

ρ(x)c(x, u)
∂u

∂t
=

∂

∂x

[
K0(x)

∂u

∂x

]
+Q(x, t).
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